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1 Introduction

Let a, b, and c be positive integers such that a < b < c; suppose we want to color
the set Sn = {1, 2, ..., n} with three colors such that the distances a, b, and c are
forbidden, meaning that if |x− y| ∈ {a, b, c} for x, y ∈ Sn, then x and y must be
colored differently. What is the largest n such that this is possible? It turns out
that this question is most interesting when a+ b = c. Before we further discuss
the case c = a+ b, we make some definitions.

Definition Let a, b, and c be positive integers such that a < b < c. The
minimum number of colors needed to color a set of integers S such that the
distances a, b, and c are forbidden is the chromatic number of S with respect to
the forbidden distances a, b, and c, and is denoted by χ(S, {a, b, c}).
Chen, Chang, and Huang [1] proved the following theorem:

Theorem 1. Let a, b, and c be positive integers such that a < b < c,
gcd(a, b, c) = 1, and at least one of {a, b, c} is even. Then χ(Z, {a, b, c}) ∈ {3, 4}.
χ(Z, {a, b, c}) = 3 if one of the following is true:

1. c = a+ b and a ≡ b mod 3.

2. a = 1, b = 2, and c 6≡ 0 mod 3.

3. a ≥ 2, b = a+ 1, and c 6= 2a+ 1.

Furthermore, χ(Z, {a, b, c}) = 4 if one of the following is true:

1. c = a+ b and a 6≡ b mod 3.

2. a = 1, b = 2, and c ≡ 0 mod 3.
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2 Maximum Lengths

We are interested in the cases wherein the chromatic number of the integers with
respect to the forbidden distances {a, b, c} is 4 because it is in those cases that
the largest n mentioned in the first sentence of this paper exists.

Definition Let Sn = {1, 2, ..., n} be the set of all positive integers less than or
equal to n. Given {a, b, c} such that a < b < c and χ(Z, {a, b, c}) = 4 , we say
that the maximum n such that Sn = {1, 2, ..., n} can be three colored so that
the distances a, b, and c are forbidden is the maximum length with respect to
{a, b, c}, and is denoted

max(n : χ(Sn, {a, b, c}) < 4) = ML(a, b, c) (1)

If χ(Z, {a, b, c}) < 4, we say that ML(a, b, c) =∞.

Example 1. What is ML(1, 2, 3)? In Sn = {1, 2, ..., n}, let’s start by coloring
the number 1 red. Then the number 2 must be different since it is a distance 1
from the number 1; let’s color it yellow. Finally, the number 3, being a distance
1 from the number 2 and a distance 2 from the number 1, must be some other
color; why not blue? But now we are in trouble, since there are no colors left
for the number 4. Therefore, ML(1, 2, 3) = 3.

Example 2. What is ML(1, 2, n) when n 6≡ 0 mod 3? We may color the
integers like so:

C(i) =

 Red : i ≡ 0 mod 3
Y ellow : i ≡ 1 mod 3
Blue : i ≡ 2 mod 3

Clearly this coloring respects the forbidden distances 1, 2, and n. Therefore,
when n 6≡ 0 mod 3, we have χ(Z, {1, 2, n}) ≤ 3 and so ML(1, 2, n) =∞. (Note:
we could also have gotten χ(Z, {1, 2, n}) = 3 from Theorem 1; in fact, the
coloring given here proves one claim of Theorem 1).

Theorem 2. If n ≥ 3 and n ≡ 0 mod 3, then ML(1, 2, n) = n

Proof. With the forbidden distances 1 and 2, we are forced into a coloring as in
Example 2 wherein a period of 3 different colors (for example, {Red, Y ellow,
Blue}) is repeated. This suffices to color Sn, whence we have ML(1, 2, n) ≥ n.
But in an attempt to 3-color Sn+1, the above coloring would result in 1 and
n+ 1 being the same color, since n+ 1 ≡ 1 mod 3. Thus, ML(1, 2, n) ≡ n when
n ≡ 0 mod 3.

With that settled, we move on to the case that c = a + b. We start with a
useful lemma, for which we are indebted to [1]:

Lemma 3. Let Sn be colored with three colors so that distances a, b, and a+ b
are forbidden.

1. For all x ∈ Sn, if a + 1 ≤ x ≤ n − b, then x and x + b − a are the same
color.
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2. For all x ∈ Sn, if x ≤ n − (2a + b), then x and x + 2a + b are the same
color.

Proof. For 1 we note that x − a, x, and x + b have different colors, and that
x−a, x+ b, and x+ b−a have different colors. Since there are only three colors,
x and x+ b− a must be the same color.
For 2 we note that x, x+ a, and x+ a+ b have different colors, and that x+ a,
x + a + b, and x + 2a + b have different colors. Since there are only 3 colors, x
and x+ 2a+ b are the same color.

We now prove several formulae for ML(a, b, a+ b) for certain a, b.

Theorem 4.

ML(1, b, b+ 1) =

 2b : b ≡ 0 mod 3
∞ : b ≡ 1 mod 3
2b− 1 : b ≡ 2 mod 3

Proof. When b ≡ 1 mod 3, χ(Z, {1, b, b+ 1}) = 3 by Theorem 1, so
ML(1, b, b+ 1) =∞ in that case.
For the other cases, supposing that Sn is colored with red, yellow, and blue so
that distances 1, b, and b+ 1 are forbidden, we note that if x ≤ n− b− 2, then
x and x + 2 must be different colors. To see this, we suppose otherwise that x
and x+ 2 were both the same color, say red. Clearly x+ 1 must be a different
color, so let it be yellow. Now x + (b + 1) must be different from x and x + 1,
so it must be blue. But now x+ (b+ 2) cannot be colored, since x+ 1 is yellow,
x+ 2 is red, and x+ (b+ 1) is blue.
Combining the above observation with the fact that 1 is a forbidden distance,
we see that the first n − b numbers of Sn must be colored based on their value
modulo 3, as in Example 2. Furthermore, for b+ 1 ≤ x ≤ n− 1, we must have x
colored the same as x− b+ 1, since it must be different from x− b and x− b− 1
(when x = b + 1, its color must be different from those of 1 and b + 2, which
both must be different from the color of 2).
Now suppose b ≡ 2 mod 3 and n = 2b. We start with 1 colored red and 2 colored
yellow. The forced coloring just described results in b ≡ 2 mod 3 colored yellow
and b + 1 colored the same as b + 1 − b + 1 = 2, which is also yellow. This is
a contradiction, whence ML(1, b, b + 1) < 2b when b ≡ 2 mod 3. On the other
hand, if n = 2b− 1, then we have the numbers 1 through b− 1 colored

R, Y,B, ..., R

and the numbers b+ 1 through 2b− 2 colored

Y,B,R, ..., R

This coloring has all x colored differently from x+ 1, x+ b, and x+ b+ 1, when
these are colored. In this case, we may safely color the number b blue and the
number 2b−1 yellow, whereupon we conclude that ML(1, b, b+1) = 2b−1 when
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b ≡ 2 mod 3.
Finally, suppose b ≡ 0 mod 3 and n = 2b + 1. We start again with 1 colored
red and 2 colored yellow. What color is b + 1? Since b + 1 ≤ n − b, it should
be colored red based on its value modulo 3. However, it also needs to be the
same color as b+ 1− b+ 1 = 2, which is yellow. This is a contradiction, whence
ML(1, b, b+ 1) < 2b+ 1 when b ≡ 0 mod 3. On the other hand, if n = 2b, then
we have the numbers 1 through b colored

R, Y,B, ..., B

and the numbers b+ 1 through 2b− 1 colored

Y,B,R, ..., B

This coloring has all x colored differently from x + 1, x + b, and x + b + 1,
when these are colored. In this case, we may safely color the number 2b red,
whereupon we conclude that ML(1, b, b+ 1) = 2b when b ≡ 0 mod 3.

Theorem 5.
ML(a, a+ 1, 2a+ 1) = 3a

Proof. In S3a, the following 3-coloring respects the forbidden distances.

• If i ≤ a, color i red.

• If a < i ≤ 2a, color i yellow.

• If i > 2a, color i blue.

Therefore ML(a, a+1, 2a+1) ≥ 3a. Now toward contradiction, assume ML(a, a+
1, 2a+1) > 3a. We may as well assume that a > 1. Then S3a+1 can be 3-colored
with respect to the forbidden distances. We may as well start by coloring the
number 1 red, a+ 1 yellow, and 2a+ 2 blue. By Lemma 3, we are now forced to
make a+ 2 yellow. Here’s what we have so far:

Number 1 ... a+ 1 a+ 2 ... 2a+ 2 ... 3a+ 1
Color R ? Y Y ? B ? ?

Applying Lemma 3 with x = a+ 2, we must have a+ 3 yellow. Then, applying
Lemma 3 with x = a+ 3, we must have a+ 4 yellow. This process will conclude
with 2a+ 1 colored yellow. But then 2a+ 1 and a+ 1 are both yellow, and we’re
in trouble. Therefore, ML(a, a+ 1, 2a+ 1) = 3a.

It turns out that our results are not only discrete; with the following theorem,
we make our results continuous:

Theorem 6. Let a, b, and c be integer forbidden distances. Sn can be 3-colored
with respect to the forbidden distances if and only if the real interval [0, n) can
be as well.
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Proof. Assume Sn can be 3-colored with respect to the forbidden distances (this
is equivalent to ML(a, b, c) ≥ n). The following is a valid 3-coloring of the real
interval [0, n) with respect to the forbidden distances:

• The color of x ∈ [0, n) is the same as the color of (bxc+ 1) ∈ Sn.

Now assume the real interval [0, n) can be 3-colored with respect to the forbidden
distances. The following is a valid 3-coloring of Sn with respect to the forbidden
distances:

• The color of x ∈ Sn is the same as the color of (x− 1) ∈ [0, n).

This leads us to a theorem which can reduce any problem with forbidden
distances to a problem with relatively prime forbidden distances.

Theorem 7. For any positive integer k and integer forbidden distances a, b, c,

ML(ka, kb, kc) = k ·ML(a, b, c)

Proof. We begin by showing that ML(ka, kb, kc) ≥ k·ML(a, b, c). Let ML(a, b, c) =
n. Then there is a 3-coloring of Sn with respect to the forbidden distances a, b,
and c. By Theorem 6, this gives us a 3-coloring of the real interval [0, n) with
respect to the forbidden distances a, b, and c. Let this coloring be C(x), a map
from [0, n) to {red, yellow, blue}. Now color the interval [0, kn) like so: the color
of x ∈ [0, kn) is the color given by C(x/k). This results in a ”stretched” version
of C, a 3-coloring of [0, kn) which respects the forbidden distances ka, kb, and kc.
By Theorem 6, the existence of this coloring implies that ML(ka, kb, kc) ≥ kn,
or ML(ka, kb, kc) ≥ k ·ML(a, b, c).

Now, toward contradiction, suppose ML(ka, kb, kc) > k ·ML(a, b, c). Equiv-
alently, suppose ML(ka, kb, kc) ≥ k ·ML(a, b, c) + 1. Let ML(a, b, c) = n again.
Then there is a 3-coloring of Skn+1 with respect to the forbidden distances ka, kb,
and kc. By Theorem 6, this gives us a 3-coloring of the real interval [0, kn+ 1)
which respects the forbidden distances ka, kb, and kc. Let this coloring be D(x),
a map from [0, kn+ 1) to {red, yellow, blue}. Now color the interval [0, n+ 1

k )
like so: the color of x ∈ [0, n+ 1

k ) is given by D(kx). This results in a ”shrunken”
version of D, a 3-coloring of [0, n+ 1

k ) which respects the forbidden distances a, b,
and c. Let this coloring of [0, n + 1

k ) be D′(x) = D(kx), a map from [0, n + 1
k )

to {red, yellow, blue}. Now color Sn+1 like so: the color of i ∈ Sn+1 is given
by D′(i− 1) (we subtract 1 because the real interval starts at 0 and Sn+1 starts
at 1). Now we have a 3-coloring of Sn+1 which respects the forbidden distances
a, b, and c. Then it must be the case that ML(a, b, c) ≥ n + 1. But we started
with ML(a, b, c) = n, so we have arrived at a contradiction. Thus, it must be
the case that ML(ka, kb, kc) = k ·ML(a, b, c).

Corollary 8. Suppose a, b, and c are forbidden distances with common divisor
d. Then

ML(a, b, c) = d ·ML

(
a

d
,
b

d
,
c

d

)
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The proof is trivial.

Corollary 9. When a is even, ML(a, a+ 2, 2a+ 2) = 3a.

Proof. By Corollary 8,

ML(a, a+ 2, 2a+ 2) = 2 ·ML
(a

2
,
a

2
+ 1, a+ 1

)
By Theorem 5, we get

2 ·ML
(a

2
,
a

2
+ 1, a+ 1

)
= 2 ·

(
3 · a

2

)
= 3a

Before attempting ML(a, a+ 2, 2a+ 2), we prove a theorem which will help
us avoid exhausting searches for forced colorings. The author is indebted to Pete
Johnson for this theorem:

Theorem 10. Suppose that a and b are positive integers, a < b, λ, µ ∈ N and

1 + µ(2a+ b) = a+ 1 + λ(b− a) (2)

Then if Sn is three colored with respect to forbidden distances a, b, a+ b, then

n− b ≤ a+ (λ− 1)(b− a)

or, equivalently,
ML(a, b, a+ b) ≤ 2a+ λ(b− a)

Proof. Note that µ, λ ∈ N, a, b > 0, a < b, and

µ(2a+ b) = a+ λ(b− a)

Thus, we must have µ ≥ 1 and λ ≥ 2. Now suppose we have µ and λ which
satisfy equation (2). Assume towards contradiction that Sn can be 3-colored
with respect to forbidden distances a, b, and a+ b, and where

n ≥ 2a+ 1 + λ(b− a)

For each t ∈ {0, ..., λ− 1}, we have

a+ 1 ≤ a+ 1 + t(b− a) ≤ 2a+ 1 + λ(b− a)− b ≤ n− b

By Lemma 3, with x = a+1+ t(b−a) for 0 ≤ t ≤ λ−1, x and x+b−a have the
same color. Therefore, a+ 1, a+ 1 + b− a, a+ 1 + 2(b− a), ..., a+ 1 + λ(b− a)
all have the same color.
By equation (2), we have

1 ≤ a+ 1 + λ(b− a) = 1 + µ(2a+ b) ≤ n− a < n
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We will show that a+1+λ(b−a) must have the same color as 1, with an argument
that will be given shortly; if this is so, then 1, a+ 1, and a+ 1 + λ(b− a) must
be the same color. But (a+ 1)− a = 1, so that can’t be possible.
Now how do we see that 1 and 1 + µ(2a + b), which is ≤ n − a < n, are the
same color? The argument is similar to the one that established that a+ 1 and
a+ 1 + λ(b− a) are the same color.
For 0 ≤ t ≤ µ− 1,

1 ≤ 1 + t(2a+ b) ≤ 1 + (µ− 1)(2a+ b) = 1 + µ(2a+ b)− (2a+ b)

≤ n− (2a+ b)

Therefore, by Lemma 3, for each t ∈ [0, ..., µ−1], 1+t(2a+b) and 1+(t+1)(2a+b)
have the same color. Thus, 1, 1 + 2a+ b, 1 + 2(2a+ b), ..., 1 +µ(2a+ b) all have
the same color. Now 1 and a + 1 have the same color, and we’ve arrived at a
contradiction.

Theorem 11.

ML(a, a+ 2, 2a+ 2) =

{
3a : a ≡ 0 mod 2
4a+ 2 : a ≡ 1 mod 2

Proof. Corollary 9 gives us ML(a, a + 2, 2a + 2) = 3a when a is even - now we
concern ourselves with when a is odd. The following is a valid 3-coloring of
S4a+2 when a is odd.
Take x ∈ S4a+2.

• If x ≤ a or x > 3a+ 2, color x red.

• If a < x ≤ 3a+ 2 and x is even, color x yellow.

• If a < x ≤ 3a+ 2 and x is odd, color x blue.

Thus ML(a, a + 2, 2a + 2) ≥ 4a + 2 when a is odd. Towards application of
Theorem 10, let µ = 1 and λ = a+ 1. Then, equation (2) becomes

1 + (2a+ a+ 2) = a+ 1 + 2(a+ 1)

This equation is true. Thus, by Theorem 10, ML(a, a+ 2, 2a+ 2) ≤ 4a+ 2. This
proves the theorem.

Theorem 12. Given n a positive integer, if a ≡ 0 mod n then

ML(a, a+ n, 2a+ n) = 3a

Proof. Since a ≡ 0 mod n, we have gcd(a, a+n, 2a+n) = n. Then, by Corollary
8, we have

ML(a, a+ n, 2a+ n) = n ·ML

(
a

n
,
a

n
+ 1,

2a

n
+ 1

)
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By Theorem 5, this becomes

n ·ML

(
a

n
,
a

n
+ 1,

2a

n
+ 1

)
= n ·

(
3 · a

n

)
= 3a

Theorem 13.

ML(a, a+ 3, 2a+ 3) =

{
∞ : a 6≡ 0 mod 3
3a : a ≡ 0 mod 3

Proof. If a ≡ 0 mod 3, Theorem 12 gives us ML(a, a+ 3, 2a+ 3) = 3a. If a 6≡ 0
mod 3, then gcd(a, a + 3, 2a + 3) = 1 and a ≡ a + 3 mod 3. Then, Theorem
1 gives us χ(Z, {a, a + 3, 2a + 3}) = 3, whence ML(a, a + 3, 2a + 3) = ∞ when
a 6≡ 0 mod 3.

3 A Computational Method

In this section, we present a computational method by which the author found
ML(a, b, c) for various a, b, c and were able to observe the patterns that suggested
the above formulae. The method was inspired by the logical nature of various
brute force attempts made towards 3-coloring the integers with certain forbidden
distances.
Imagine we are creating a colored ternary tree level by level. The number of
a level is the number we are trying to color. We start with Level 1, the root,
which we will color red for no particular reason. We start by giving the root
three children - one red, one yellow, and one green. Now we repeat the following
two steps:

• Check each node on the current level; if any node is the same color as its
ancestor a, b, or c levels up, delete that node.

• If any nodes remain, give each of them 3 children (one red, one yellow, one
blue). Move on to the next level.

This process will continue for infinitely many levels if and only if it is the case
that ML(a, b, c) =∞. Otherwise, it will terminate when the first step results in
the deletion of all of the nodes on a given level. Then, the number of levels in
the final tree after the process has ended is exactly ML(a, b, c). We will show
this process in action for a = 1, b = 2, and c = 3 (note that, by Example 1, we
already know that ML(1, 2, 3) = 3).

• Start:
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R

YR B

• On Level 2, the red node has a red ancestor a = 1 levels above it. Delete
the red node on Level 2.

R

Y B

• The other nodes are fine, so we move to Level 3

R

Y B

BYR R Y B

• Delete each node which is the same color as an ancestor a = 1 or b = 2
levels above.

R

Y B

B Y

• Move on to Level 4

R

Y

B

B

Y

BYR R Y B
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a = 1 2 3 4 5 6 7 8 9 10

b = 1 ∞ 3 6 ∞ 9 12 ∞ 15 18 ∞
2 3 ∞ 6 6 ∞ 12 15 ∞ 18 18
3 6 6 ∞ 9 14 9 17 19 18 24
4 ∞ 6 9 ∞ 12 12 ∞ 12 24 ∞
5 9 ∞ 14 12 ∞ 15 22 ∞ 25 15
6 12 12 9 12 15 ∞ 18 18 18 28
7 ∞ 15 17 ∞ 22 18 ∞ 21 30 ∞
8 15 ∞ 19 12 ∞ 18 21 ∞ 24 24
9 18 18 18 24 25 18 30 24 ∞ 27
10 ∞ 18 24 ∞ 15 28 ∞ 24 27 ∞

Figure 1: ML(a, b, a+ b) for 1 ≤ a, b ≤ 10

• All of the nodes on Level 4 get deleted for being a = 1, b = 2, or c = 3
levels below an ancestor of the same color. Thus, we stop, and the number
of levels of the final tree gives us ML(1, 2, 3) = 3.

In fact, this process actually gave us two 3-colorings of S3 ({R, Y,B} and
{R,B, Y }); although in this case the 3-colorings are the same up to renam-
ing of colors, it is still true that the algorithm will produce all 3-colorings of
SML(a,b,c). This algorithm is deterministic, and will calculate the exact value of
ML(a, b, c) when it is finite. The author has implemented this algorithm in C++,
and some results are displayed in Figure 1.
Many patterns can be seen in this table; the following conjecture is based on
patterns observed in this data and more.

Conjecture 14.

ML(a, a+ 4, 2a+ 4) =

 4a+ 5 : a ≡ 1 mod 2
4a+ 4 : a ≡ 2 mod 4
3a : a ≡ 0 mod 4

The proof for when a ≡ 2 mod 4 involves a simple application of Corollary
8 and Theorem 11. When a ≡ 0 mod 4, we know the formula from Theorem
12. The conjecture resides in the case a ≡ 1 mod 2.
Another potential area of discussion: given a, b, c forbidden distances, is there
a meaningful way to analyze the number of non-isomorphic colorings of sets Sn

for 1 ≤ n ≤ ML(a, b, c)? The author has discovered that, for some forbidden
distances a, b, c, there is only one coloring (up to renaming of colors) of Sn where
n = ML(a, b, c). We omit any proof of this, but such a proof would be similar to
those above that involve seeing what is forced once you assume the colors of two
of the numbers, without loss of generality. For instance, the proper colorings of
Sn in Theorem 4, when b 6≡ 1 mod 3, are unique, and something similar holds
in Theorem 5.
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